
**Standard 5 Test** 

Multiple Choice (1pt each)

- 1) Which of the following processes is exothermic:
  - a) Ice cube melting
  - b) Steam condensing
  - c) Water evaporating
  - d) Dry ice subliming (going from solid to a gas)
- 2) Which term best describes the given reaction:  $2SO_3 \rightarrow 2SO_2 + O_2 \qquad \Delta H = +198 \, kJ$ 
  - a) Synthesis Reaction
  - b) Exothermic Reaction
  - c) Single Replacement
  - d) Endothermic Reaction
- 3) A student noticed that a solution increased in temperature during a reaction. How should the reaction be classified?
  - a) As a single-replacement
  - b) As a double-replacement
  - c) As exothermic
  - d) As endothermic
- 4) Which picture shows the correct electrochemical process for the following reaction:



- 5) After the reaction:  $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$  has reached equilibrium, how would adding more  $CO_2$  affect the equilibrium?
  - A. Equilibrium would shift to the right
  - B. Equilibrium would shift to the left
  - C. Equilibrium would remain constant
  - D. Equilibrium would increase
- 6) After the reaction:  $N_2(g) + 3H_2(g) = 2NH_3(g) + 92$  kJ has reached equilibrium, which of the following would cause the equilibrium to shift to the left?
  - A. Increasing the amount of N<sub>2</sub>
- C. Reducing the amount of  $\mathrm{NH}_3$
- B. Increasing the amount of NH<sub>3</sub>
- D. Learning the skill of force lightning

## Use this equation to answer the next three questions:

$$2SO_2(g) + O_2(g) = 2SO_3(g) + heat$$

- 7) Using the equation above, what effect would adding heat have on the reaction?
  - A. It would stay the same
  - B. It would move toward the reactants
  - C. It would move towards the product
  - D. It would increase both product and reactant
- 8) In the above equation, how would decreasing the temperature of the system affect the reaction?
  - A. It would move towards the reactants
  - B. It would move toward the products
  - C. It would stay the same
  - D. It would increase both product and reactant
- 9) If the reaction were at equilibrium, how would the addition of SO<sub>3</sub> affect the reaction?
  - A. It would move towards the product
  - B. It would move toward the reactants
  - C. It would stay the same
  - D. It would decrease both product and reactant

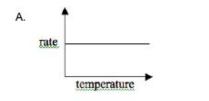
The next 5 questions will state a stress applied to a system at equilibrium, please indicate what will happen after the stress is applied.

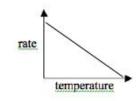
#### A + B = C + D + heat

- 10) Heat is added to the system.
- 11) C is removed from the system.
- 12) Additional B and A are added to the system.
- 13) The temperature of the system is reduced.
- 14) B is removed from the system.

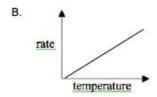
- Moves to the left (reactants)
- B. Moves to the right (products)
- Moves to the center (middle)
- D. Moves with the force (Jedi)
- 15). In the graph on the right, at what time is equilibrium achieved?

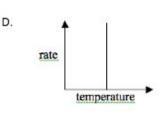



- B. 6.1
- C. 4.7
- D. 2.5


- Concentration (mol/L)

  Reactants


  0 1 2 3 4 5 6
- 16) True(A) or False(B): Net/Overall concentrations of products and reactants change when a system reaches equilibrium.
- 17) Which statement most accurately describes when dynamic equilibrium is reached?
  - A. When all of the reactants are converted to products
  - B. When the concentration of the products is equal to the concentration of the reactants
  - C. When the rate of the forward reaction equals the rate of the reverse reaction
  - D. When the reverse reaction has completely occurred and only reactants remain


- 18) Which of the following statements about reaction rates best explains why refrigerators prevent food from spoiling?
  - A. Refrigerator's seal out bacteria and preventing reactions from occurring
  - B. Refrigerators kill enzymes, without enzymes the spoiling reaction occurs very slowly
  - C. Refrigerators create a constant internal environment, keeping the food in equilibrium
  - D. Refrigerators have low temperatures, which usually slows down reaction rates
- 19) Which of the following graphs most correctly illustrates the typical relationship between reaction rate and temperature?

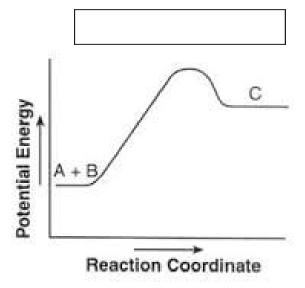




C.






- 20) Which of the following statements about collisions and reaction rate is most correct?
  - A. More energy causes fewer collisions and increases the reaction rate
  - B. Less energy causes particles to collide with more force and decreases reaction rate
  - C. More energy causes more collisions and increases the reaction rate
  - D. Neither energy nor collisions affects the reaction rate
- 21) Why do carbon and oxygen not react to form carbon dioxide at room temperature?
  - A. They are not attracted to one another
  - B. They do not have enough activation energy
  - C. They form carbon dioxide but it decomposes quickly
  - D. They are not found together under normal circumstances
- 22) In a chemical reaction, what does increasing the number collisions of atoms and the amount of energy in each collision correlate to?
  - A. An endothermic reaction.
  - B. An increase in amount of reactant
  - C. A larger product molecule
  - D. A higher rate of reaction
- 23) Why does increasing the concentration of reactants often increase the rate of the reaction?
  - A. The temperature will rise
  - B. The activation energy is increased
  - C. The number of collisions increases
  - D. The products stop reverting back into reactants
- 24) Why do catalysts not appear as reactants or products in chemical equations?
  - A. they are both reactants and products
  - B. they are consumed by the reaction
  - C. they do not react with the other atoms
  - D. they cannot be measured

| Name_ |        |  |
|-------|--------|--|
|       | Period |  |

# Remember to write in COMPLETE sentences!

### **Chemistry Unit 5 Test: Free response**

- 25. For the potential energy graph: (4pts)
  - a. Label: reactants and products
  - b. Label as exothermic or endothermic.
  - c. Draw the activation energy
  - d. Draw the how the graph would change if a **catalyst** were added.



26. A student performs an experiment where two colorless solutions are mixed to make a blue solution. The student measures the time it takes for the solutions to change color. The results of the student's experiment are given below (3 pts):

|         | Amount of Solution<br>A | Amount of Solution<br>B | Temperature of solutions | Time for color to change (s) |
|---------|-------------------------|-------------------------|--------------------------|------------------------------|
| Control | 50mL                    | 50 mL                   | 25°C                     | 22                           |

|               |                               | t increases the concentrati | on of A, predict what the stud | ents results will be |
|---------------|-------------------------------|-----------------------------|--------------------------------|----------------------|
| and explain y | your prediction [3 pts]       |                             |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |
| 27.5.6.41     |                               |                             |                                |                      |
| 27. Define th | ne term dynamic equilibriur   | n (3 pts):                  |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |
| 28. What is a | a catalyst and why is it usef | ul (3pts)?                  |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |
|               |                               |                             |                                |                      |

| Use the ed | quation below | to answer | questions 1 | the next 2 o | uestions: |
|------------|---------------|-----------|-------------|--------------|-----------|
|            |               |           |             |              |           |

$$210\;kJ + \; 3NH_4HF_2 + \; C_6H_8O_7 \; \leftrightarrow \; (NH_4)_3C_6H_5O_7 \; + \; 6HF$$

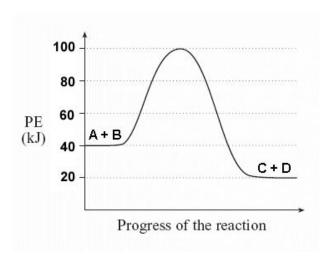
| 29. If you have 1.5g of $NH_4HF$ | $C_2$ and 1.5g of $C_6H_8O_7$ | , what is the theoretical | yield of of HF in grams? | [4 pts] |
|----------------------------------|-------------------------------|---------------------------|--------------------------|---------|
|----------------------------------|-------------------------------|---------------------------|--------------------------|---------|

| Answer: |  |  |
|---------|--|--|
|         |  |  |

30. Give 3 different stresses that could be applied to the equilibrium system above to increase the amount of HF (shift to the right): [3 pts]

- a)
- b)
- c)

31. Describe **three ways** you could try to make Zinc react more quickly with hydrochloric acid. Explain at the molecular level why each method would be help: [3 pts]


| 1) |      |      | <br> |
|----|------|------|------|
|    |      |      | _    |
| 2) | <br> | <br> | <br> |
|    | <br> | <br> | <br> |
| 3) |      |      | <br> |
|    |      |      |      |

| Name_ |  |  |  |
|-------|--|--|--|
|       |  |  |  |

| Period |  |
|--------|--|
| CHOU   |  |

### **Chemistry Unit 5 Test: Free response**

- 25. For each potential energy graph below: (4pts)
  - a. Label: reactants and products
  - b. Label as exothermic or endothermic.
  - c. Draw the activation energy
  - d. Draw the how the graph would change if a **catalyst** were added.



26. A student performs an experiment where two colorless solutions are mixed to make a blue solution. The student measures the time it takes for the solutions to change color. The results of the student's experiment are given below:

|         | Amount of Solution A | Amount of Solution<br>B | Temperature of solutions | Time for color to change (s) |
|---------|----------------------|-------------------------|--------------------------|------------------------------|
| Control | 50mL                 | 50 mL                   | 25°C                     | 22                           |

| The student repeats the experiment but decrease the concentration of solution A, predict what the students results will be and explain your prediction [3 pts] |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                |  |  |  |
|                                                                                                                                                                |  |  |  |
| 27. Define the term dynamic equilibrium (3 pts):                                                                                                               |  |  |  |
|                                                                                                                                                                |  |  |  |
|                                                                                                                                                                |  |  |  |
| 28. What is a catalyst and why is it useful (3pts)?                                                                                                            |  |  |  |
|                                                                                                                                                                |  |  |  |
|                                                                                                                                                                |  |  |  |

| Use the equation | below to answer | questions the nex    | ct 2 auestions: |
|------------------|-----------------|----------------------|-----------------|
|                  |                 | 9465615115 6116 1167 | 90.000.0        |

$$210 kJ + 3NH_4HF_2 + C_6H_8O_7 \leftrightarrow (NH_4)_3C_6H_5O_7 + 6HF$$

| 29. If you have 2.5g of $NH_4HF_2$ and 2.5g of $C_6H_8O_7$ , what is the theoretical yield of of HF in grams? [4 pts |
|----------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------|

Answer:

30. Give 3 different stresses that could be applied to the equilibrium system above to increase the amount of  $C_6H_8O_7$  (shift to the left): [3 pts]

- a)
- b)
- c)

31. Describe **three ways** you could try to make Zinc react more quickly with hydrochloric acid. Explain at the molecular level why each method would be help: [3 pts]

\_\_\_\_\_

2)\_\_\_\_\_

3)\_\_\_\_\_

\_\_\_\_\_