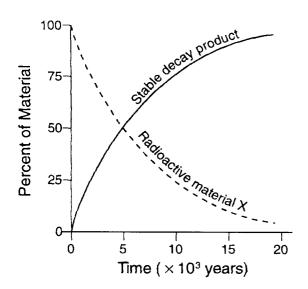
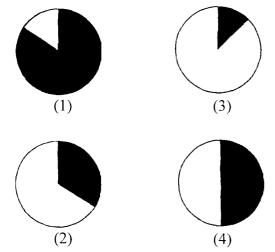
Name:

Practice Nuclear Chemistry Test

- 1. An alpha particle has the same composition as a
 - (1) hydrogen nucleus
- (3) beryllium nucleus
- (2) deuterium nucleus
- (4) helium nucleus
- 2. Which list of nuclear emissions is arranged in order from the *least* penetrating power to the greatest penetrating power?
 - (1) alpha particle, beta particle, gamma ray
 - (2) alpha particle, gamma ray, beta particle
 - (3) gamma ray, beta particle, alpha particle
 - (4) beta particle, alpha particle, gamma ray
- 3. Which reaction is an example of natural transmutation?

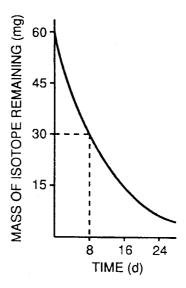

 - (1) ${}^{239}_{94}\text{Pu} \rightarrow {}^{235}_{92}\text{U} + {}^{4}_{2}\text{He}$ (2) ${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + {}^{1}_{0}\text{n}$ (3) ${}^{238}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{239}_{94}\text{Pu} + {}^{2}_{-1}\text{e}$ (4) ${}^{239}_{94}\text{Pu} + {}^{1}_{0}\text{n} \rightarrow {}^{147}_{56}\text{Ba} + {}^{90}_{38}\text{Sr} + {}^{1}_{0}\text{n}$
- 4. Which equation represents positron decay?

 - (1) ${}_{37}^{87} \text{Rb} \rightarrow {}_{-1}^{0} e + {}_{38}^{87} \text{Sr}$ (2) ${}_{92}^{277} \text{U} \rightarrow {}_{90}^{223} \text{Th} + {}_{2}^{4} \text{He}$ (3) ${}_{13}^{27} \text{Al} + {}_{2}^{4} \text{He} \rightarrow {}_{15}^{30} \text{P} + {}_{0}^{1} \text{n}$ (4) ${}_{6}^{11} \text{C} \rightarrow {}_{+1}^{0} e + {}_{5}^{11} \text{B}$


- 5. Which two radioisotopes have the same decay mode?
 - (1) 37 Ca and 53 Fe
 - (2) 220 Fr and 60 Co
 - $(3)^{37}$ K and 42 K
 - $(4)^{99}$ Tc and 19 Ne
- 6. Which nuclear equation represents beta decay?
 - $(1)_{13}^{27}\text{Al} + {}_{2}^{4}\text{He} \rightarrow {}_{15}^{30}\text{P} + {}_{0}^{1}\text{n}$
 - (2) ${}_{92}^{238}U \rightarrow {}_{90}^{234}Th + {}_{2}^{4}He$ (3) ${}_{18}^{6}C \rightarrow {}_{1}^{7}N + {}_{-1}^{0}e$ (4) ${}_{18}^{37}Ar + {}_{-1}^{0}e \rightarrow {}_{17}^{37}Cl$
- 7. Which nuclear decay emission consists of energy, only?
 - (1) alpha particle
- (3) gamma radiation
- (2) beta particle
- (4) positron
- 8. If $\frac{1}{8}$ of an original sample of krypton-74 remains unchanged after 34.5 minutes, what is the halflife of krypton-74?
 - (1) 11.5 min
- (3) 34.5 min
- (2) 23.0 min
- (4) 46.0 min
- 9. Which radioisotope undergoes beta decay and has a half-life of less than 1 minute?
 - (1) Fr-220
- (3) N-16
- (2) K-42
- (4) P-32

Practice Nuclear Chemistry Test

Base your answers to questions 10 and 11 on on the graph below. The graph represents the decay of radioactive material X into a stable decay product.



10. Which graph best represents the relative percentages of radioactive material X and its stable decay product after 15,000 years?(The shaded region represents radioactive material while the non-shaded region represents stable decay products.)

- 11. If radioactive material X were heated, the length of its half-life period would
 - (1) decrease
- (3) remain the same
- (2) increase

- 12. A 40.0 milligram sample of ³³P decays to 10.0 milligrams in 50.0 days. What is the half-life of ³³P?
 - (1) 12.5 days
- (3) 37.5 days
- (2) 25.0 days
- (4) 75.0 days
- 13. If 3.0 grams of ⁹⁰Sr in a rock sample remained in 1989, approximately how many grams of ⁹⁰Sr were present in the original rock sample in 1933?
 - (1) 9.0 g
- (3) 3.0 g
- (2) 6.0 g
- (4) 12. g
- 14. The graph below represents the decay of a radioactive isotope.

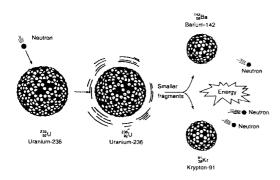
Based on Reference Table *H*, which radioisotope is best represented by the graph?

- $(1)^{32}P$
- $(2)^{131}I$
- $(3)^{198}$ Au
- $(4)^{222}Rn$
- 15. Given the fusion reaction:

$$^{2}\text{H} + ^{2}\text{H} \rightarrow X + \text{energy}$$

Which particle is represented by X?

- $(1)_{1}^{1}H$
- $(2)_{2}^{\frac{1}{3}}$ He
- $(3)_{1}^{3}H$
- $(4)_{2}^{4}He$


16. Given the reaction:

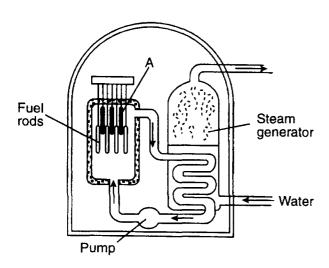
$$^{27}_{13}\text{Al} + ^{4}_{2}\text{He} \rightarrow X + ^{1}_{0}\text{n}$$

When the equation is correctly balanced, the nucleus represented by X is

- $(1)_{13}^{30}Al$
- (2) $\frac{30}{14}$ Si
- $(3)_{15}^{30}P$
- $(4)_{16}^{30}S$
- 17. Artificial transmutation is brought about by using accelerated particles to bombard an atom's
 - (1) nucleus
 - (2) valence shells
 - (3) occupied sublevels
 - (4) inner principal energy levels
- 18. Which equation is an example of artificial transmutation?

 - (1) ${}^{238}_{92}\text{U} \rightarrow {}^{4}_{2}\text{He} + {}^{234}_{90}\text{Th}$ (2) ${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow {}^{30}_{15}\text{P} + {}^{1}_{0}\text{n}$ (3) ${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e}$ (4) ${}^{226}_{88}\text{Ra} \rightarrow {}^{4}_{2}\text{He} + {}^{222}_{86}\text{Rn}$
- 19. The diagram below represents a nuclear reaction in which a neutron bombards a heavy nucleus.

Which type of reaction does the diagram illustrate?


- (1) fission
- (3) alpha decay
- (2) fusion
- (4) beta decay

- 20. Which statement best describes a primary occurrence in an uncontrolled fission reaction?
 - (1) Mass is created and energy is released.
 - (2) Mass is created and energy is stored.
 - (3) Mass is converted to energy, which is released.
 - (4) Mass is converted to energy, which is stored.
- 21. The fusion of hydrogen nuclei with the release of energy can be initiated by a fission reaction because the fission reaction provides a
 - (1) high temperature and high pressure
 - (2) high temperature and low pressure
 - (3) good supply of hydrogen nuclei
 - (4) good supply of neutrons
- 22. Which equation represents nuclear fusion?

 - (1) ${}_{6}^{14}\text{C} \rightarrow {}_{7}^{14}\text{N} + {}_{-1}^{0}\text{e}$ (2) ${}_{13}^{27}\text{Al} + {}_{2}^{4}\text{He} \rightarrow {}_{15}^{30}\text{P} + {}_{0}^{1}\text{n}$ (3) ${}_{92}^{235}\text{U} + {}_{0}^{1}\text{n} \rightarrow {}_{56}^{139}\text{Ba} + {}_{36}^{94}\text{Kr} + 3 {}_{0}^{1}\text{n}$ (4) ${}_{1}^{2}\text{H} + {}_{1}^{3}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{0}^{1}\text{n}$
- 23. The energy released in a fusion reaction comes from
 - (1) a conversion of some of the reactant's mass
 - (2) the formation of chemical bonds by the reactants
 - (3) the loss of kinetic energy of the reactants
 - (4) the splitting of a nucleus
- 24. What is a problem commonly associated with nuclear power facilities?
 - (1) A small quantity of energy is produced.
 - (2) Reaction products contribute to acid rain.
 - (3) It is impossible to control nuclear fission.
 - (4) It is difficult to dispose of wastes.

Practice Nuclear Chemistry Test

25. The diagram below represents a nuclear reactor. The arrows indicate the direction of the flow of water.

Which structure is indicated by letter A?

- (1) turbine
- (3) control rod
- (2) moderator
- (4) internal shield
- 26. Which isotopic ratio needs to be determined when the age of ancient wooden objects is investigated?
 - (1) uranium-235 to uranium-238
 - (2) hydrogen-2 to hydrogen-3
 - (3) nitrogen-16 to nitrogen-14
 - (4) carbon-14 to carbon-12
- 27. The radioisotope I-131 is used to
 - (1) control nuclear reactors
 - (2) determine the age of fossils
 - (3) diagnose thyroid disorders
 - (4) trigger fussion reactors

Practice Nuclear Chemistry Test

Base your answers to questions 28 and 29 on the information below

In living organisms, the ratio of the naturally occurring isotopes of carbon, C-12 to C-13 to C-14, is fairly consistent. When an organism such as a woolly mammoth died, it stopped taking in carbon, and the amount of C-14 present in the mammoth began to decrease. For example, one fossil of a woolly mammoth is found to have of the amount of C-14 found in a living organism.

- 28. Identify the type of nuclear reaction that caused the amount of C-14 in the woolly mammoth to *decrease* after the organism died.
- 29. Determine the total time that has elapsed since this woolly mammoth died.

Practice Nuclear Chemistry Test Answer Key practive nuke test [Nov 03, 2010]

- 1. ___4
- 2. __1___
- 3. __1___
- 4. _____ 4 ____ beta decay radioactive decay
- 5. ___1___
- 6. ___3___
- 7. ___3___
- 8. ___1___
- 9. ___3___
- 10. ___3___
- 11. ___3___
- 12. ____2___
- 13. ___4
- 14. ____2___
- 15. ___4___
- 16. ___3___
- 17. ___1___
- 18. ____2
- 19. ___1
- 20. ___3___
- 21. __1__
- 22. ___4___
- 23. __1___
- 24. ___4___

- 25. ___3___
- 26. ___4
- 27. ___3
- 28. Examples: natural transmutation transmutation
- 29. 28 650 y